# SE Geographie und Ökonomie

Einheit 2: Univariate Datenanalyse: Deskriptive Statistik

Bernhard Schmidpeter

bernhard.schmidpeter@jku.at

Institut für Volkswirtschaftslehre

SoSe 2024

# (Fiktiver) Gemeindefinanzbericht

|    | A         | В                  | С                   | D                   | E                       | F                      | G          | н |
|----|-----------|--------------------|---------------------|---------------------|-------------------------|------------------------|------------|---|
| 1  | Region_ID | Verwaltungseinheit | Ausgaben Verwaltung | Ausgaben öff. Güter | Einnahmen Gewerbesteuer | Einnahmen Umverteilung | Überschuss |   |
| 2  | 101       | 1                  | 0.90                | 4.70                | 1.62                    | 1.48                   | -2.50      |   |
| 3  | 101       | 2                  | 0.66                | 5.19                | 1.16                    | 1.17                   | -3.52      |   |
| 4  | 103       | 1                  | 0.73                | 4.89                | 2.20                    | 1.19                   | -2.24      |   |
| 5  | 103       | 2                  | 0.09                | 5.88                | 1.43                    | 1.17                   | -3.36      |   |
| 6  | 104       | 1                  | 0.63                | 3.54                | 1.01                    | 0.39                   | -2.77      |   |
| 7  | 104       | 2                  | 2.28                | 4.82                | 14.48                   | 1.68                   | 9.06       |   |
| 8  | 105       | 1                  | 0.27                | 1.28                | 2.35                    | 0.52                   | 1.33       |   |
| 9  | 105       | 2                  | 0.40                | 5.53                | 3.39                    | 1.99                   | -0.54      |   |
| 10 | 106       | 1                  | 1.40                | 7.70                | 2.14                    | 1.12                   | -5.84      |   |
| 11 | 106       | 2                  | 0.66                | 8.84                | 3.33                    | 1.13                   | -5.04      |   |
| 12 | 107       | 1                  | 0.50                | -159.35             | -4.88                   | 1.24                   | 155.22     |   |
| 13 | 107       | 2                  | 0.21                | -29.71              | -1.79                   | 0.33                   | 28.04      |   |
| 14 | 108       | 1                  | 0.54                | 5.07                | 1.49                    | 1.39                   | -2.74      |   |
| 15 | 108       | 2                  | 0.70                | 5.24                | 1.23                    | 1.09                   | -3.61      |   |
| 16 | 109       | 1                  | 0.88                | 8.62                | 1.62                    | 1.07                   | -6.82      |   |
| 17 | 109       | 2                  | 0.40                | 9.65                | 3.55                    | 1.69                   | -4.81      |   |
| 18 | 110       | 1                  | 1.46                | 3.80                | 2.36                    | 1.02                   | -1.89      |   |
| 19 | 110       | 2                  | 19.35               | 116.30              | 32.97                   | 2.82                   | -99.86     |   |
| 20 | 120       | 1                  | 0.90                | 8.67                | -1.11                   | 0.86                   | -9.81      |   |
| 21 | 120       | 2                  | 2.90                | 7.98                | 9.10                    | 1.92                   | 0.14       |   |
| 22 | 131       | 1                  | 0.23                | 4.70                | 2.92                    | 0.63                   | -1.38      |   |
| 23 | 131       | 2                  | -0.02               | 4.70                | 2.46                    | 0.31                   | -1.91      |   |
| 24 | 132       | 1                  | 0.11                | 0.90                | 1.83                    | 0.05                   | 0.87       |   |
| 25 | 132       | 2                  | 0.05                | 2.49                | 1.49                    | -0.15                  | -1.20      |   |
| 26 | 133       | 1                  | 1.14                | 4.71                | 3.40                    | 1.91                   | -0.54      |   |
| 27 | 133       | 2                  | 0.41                | 4.78                | 1.26                    | 0.45                   | -3.49      |   |
| 28 | 139       | 1                  | 0.33                | 7.43                | 0.74                    | 0.42                   | -6.60      |   |
| 29 | 139       | 2                  | 0.29                | 5.61                | -0.36                   | 0.32                   | -5.93      |   |
| 30 | 141       | 1                  | 0.72                | 4.42                | 1.84                    | 0.84                   | -2.46      |   |
| 31 | 141       | 2                  | 0.47                | 2.99                | -0.96                   | 0.78                   | -3.64      |   |
| 32 | 143       | 1                  | 1.08                | 8.55                | 1.78                    | 0.91                   | -6.93      |   |
| 33 | 143       | 2                  | -0.38               | 6.66                | 1.86                    | 0.64                   | -3.78      |   |
| 34 |           |                    |                     |                     |                         |                        |            |   |

#### Deskriptive Statistik

- Rohdaten und assozierten 'Urlisten' der enthaltenen Merkmäler sind oft unübersichtlich
- Die Daten sollten deshalb in einer übersichtlichen Form dargestellt werden
  - Verteilung eines Merkmals in den Daten
  - Durchschnitt und Streuung eines Merkmals
- Um zu einer übersichtlichen Form zu gelangen, werden Daten of verdichtet
  - Durch verdichten gehen Informationen verloren
  - Durch verdichten können bestimmte Zusammenhänge suggeriert werden

Sie können ein Merkmals einer Stichprobe oder einer Grundgesamtheit auf folgende Arten **beschreiben bzw. darstellen**:

- Darstellung der Verteilung eines Merkmals als Häufigkeitsverteilung (tabellarisch)
- Darstellung der Verteilung als Stabdiagramm oder Histogramm (grafisch)
- Beschreibung einer Variable durch Lage- und Streuungsmaße
- Sie sind sich bewusst, wie unterschiedliche Darstellungen der Daten einen unterschiedlichen Zusammenhang suggerieren können

# Häufigkeitsverteilung

Bei diskreten (insbesondere nominal oder ordinal skalierten) Merkmalen. Bezeichnungen:

- *N* Untersuchungsumfang (Population von Interesse)
- *n* Stichprobenumfang (Unsere "Daten")
- r Anzahl an verschiedenen Ausprägungen (Variablen)

$$x_m$$
 Ausprägung,  $m = 1, ..., r$ 

$$h_m$$
 absolute Häufigkeit der Ausprägung  $x_m$ 

$$p_m = h_m/n$$
 relative Häufigkeit der Ausprägung  $x_m$ 

 $P_m = 100 \cdot p_m$  relative Häufigkeit der Ausprägung  $x_m$  in Prozent

| Klasse          | Ausprägung             | Absolute<br>Häufigkeiten | Relative<br>Häufigkeiten | Relative<br>Häufigkeiten<br>(in Prozent) |
|-----------------|------------------------|--------------------------|--------------------------|------------------------------------------|
| т               | x <sub>m</sub>         | $h_m$                    | $p_m$                    | $P_m$ (in %)                             |
| 1               | Farm House             | 179                      | 0.034                    | 3.4                                      |
| 2               | 1-2 Fam. House         | 1,959                    | 0.370                    | 37.0                                     |
| 3               | 1-2 Fam. Rowhouse      | 931                      | 0.176                    | 17.6                                     |
| 4               | Apt. In 3-4 Unit Bldg. | 510                      | 0.096                    | 9.6                                      |
| 5               | Apt. In 5-8 Unit Bldg. | 969                      | 0.183                    | 18.3                                     |
| 6               | Apt. In 9+ Unit Bldg.  | 674                      | 0.127                    | 12.7                                     |
| 7               | High Rise              | 63                       | 0.012                    | 1.2                                      |
| ( <i>r</i> =) 8 | Other Building         | 5                        | 0.001                    | 0.1                                      |
| Summe           | ( <i>n</i> =)          | 5,290                    | 1                        | 100                                      |

# Häufigkeitsverteilung: Tabelle (Wohnungsart)

Anmerkung: Der Datensatz beinhaltet eigentlich 5,411 Erhebungseinheiten, aber 121 Personen haben keine Angaben zur Wohnungsart gemacht. Diese **fehlenden Werte** sollten in EXCEL mit leeren Zellen kodiert sein (und nicht mit ".", kA, 9999, …) und werden bei sämtlichen Berechnungen ausgelassen.

# Häufigkeitsverteilung: Stabdiagramm (Wohnungsart)



# Häufigkeitsverteilung: Tabelle (Wohnungsgröße)

Bei **stetigen Merkmalen** ist es für die Erstellung einer Häufigkeitstabelle zielführend, den gesamten Wertebereich in **Intervalle** zu gliedern.

Änderungen zu diskreten Variablen:

- $e_{m-1}$  ist die Unter- und  $e_m$  die Obergrenze des *m*-ten Intervalls.
- $h_m = h(e_{m-1} < x \le e_m)$  ist die absolute Häufigkeit des Intervalls  $I_i = (e_{m-1}, e_m]$ .
- $d_m = e_{m-1} e_m$  ist die Intervallbreite.
- Die Dichte  $f_m = p_m/d_m$  ist der Quotient aus relativer Häufigkeit  $p_m = h_m/N$  und Intervallbreite  $d_m$ .
- Es empfiehlt sich (außer in Ausnahmefällen), für alle Intervalle die gleichen Intervallbreite zu wählen.
- Unterschiedliche Intervallbreiten können zu unterschiedlichen Wahrnehmungen der Daten führen

# Häufigkeitsverteilung: Histogramm (Wohnungsgröße)

Verteilung der Wohnungsgröße:

| Klasse<br>m      | Ausprägung                                   | Absolute<br>Häufigk.<br><i>h</i> m | Relative<br>Häufigk. | Relative<br>Häufigk.<br>Pm (in %) | Dichte<br>$f_m = p_m/d_m$ |
|------------------|----------------------------------------------|------------------------------------|----------------------|-----------------------------------|---------------------------|
|                  |                                              |                                    | P                    | ( , .)                            | Pm/ 4m                    |
| 1                | 0 m² bis 20 m²                               | 14                                 | 0.003                | 0.3                               | 0.00013                   |
| 2                | über 20 m $^2$ bis 40 m $^2$                 | 104                                | 0.019                | 1.9                               | 0.00096                   |
| 3                | über 40 m <sup>2</sup> bis 60 m <sup>2</sup> | 597                                | 0.110                | 11.0                              | 0.00552                   |
| 4                | über 60 m $^2$ bis 80 m $^2$                 | 1,173                              | 0.217                | 21.7                              | 0.01084                   |
| 5                | über 80 m $^2$ bis 100 m $^2$                | 1,024                              | 0.189                | 18.9                              | 0.00946                   |
| 6                | über 100 m $^2$ bis 120 m $^2$               | 775                                | 0.143                | 14.3                              | 0.00716                   |
| 7                | über $120 \text{ m}^2$ bis $140 \text{ m}^2$ | 799                                | 0.148                | 14.8                              | 0.00738                   |
| 8                | über 140 m $^2$ bis 160 m $^2$               | 475                                | 0.088                | 8.8                               | 0.00439                   |
| 9                | über 160 m $^2$ bis 180 m $^2$               | 160                                | 0.030                | 3.0                               | 0.00148                   |
| 10               | über $180 \text{ m}^2$ bis $200 \text{ m}^2$ | 135                                | 0.025                | 2.5                               | 0.00125                   |
| ( <i>r</i> =) 11 | über 200 m <sup>2</sup>                      | 154                                | 0.028                | 2.8                               |                           |
| Summe            | ( <i>n</i> =)                                | 5,410                              | 1                    | 100                               |                           |

# Histogramm: Wohnungsgröße (grafische Darstellung)

- Eine Tabellendarstellung kann oft unübersichtlich sein und eine graphische Darstellung wird bevorzugt
- Ein Histogramm ist für **metrische stetige Merkmale** geeignet, deren Ausprägungen in **Intervalle** zusammengefasst wurden.
  - Auf der x-Achse die Ausprägungen aufgetragen
  - Auf der y-Achse die **Dichten**  $f_m$  aufgetragen
  - Wenn alle Intervall gleich breit sind, so kann man anstatt der Dichte die Häufigkeit verwenden, was einfacher zu interpretieren ist

### Histogramm: Wohnungsgröße (grafische Darstellung)



#### Histogramm: verschiedene Intervallbreiten (1)





≣▶ ≣ ∽੧...

12 / 25

#### Histogramm: verschiedene Intervallbreiten (2)





= •) ((\* 13 / 25

### EXCEL Add-In Analysefunktionen

- Eine Häufigkeitstabelle kann in Excel auch über  $\textbf{Daten} \to \textbf{Analyse} \to \textbf{Datenanalyse} \to \textbf{Histogramm}$ erstellt werden
- Dabei werden lediglich absolute Häufigkeiten  $h_m$  ausgewiesen. Die relativen Häufigkeiten  $p_m$  und die Dichte  $f_m$  muss selbständig berechnet werden.
- Wird **Diagrammdarstellung** angehakt, wird ein Stabdiagram bzw. ein Histogramm ausgegeben, welches noch formatiert werden muss. Zum Beispiel, wird hier die absoluten Häufigkeiten aufgetragen.
- Mit der Analyse Funktion können nur **nur numerische Ausprägungen** verarbeitet werden
  - Zum Beispiel ist es nicht möglich, die Namensverteilung in einer Klasse darstellen zu lassen

#### Alternative Vorgehensweise in EXCEL

- EXCEL-Befehl **HÄUFIGKEIT**: Dabei handelt es sich um eine sog. Matrix-Formel, die die absoluten Häufigkeiten als einspaltige Matrix zurück gibt. Man muss daher den gesamten Ausgabebereich formatieren, und die Eingabe nicht nur mit *Enter*, sonder mit *Strg* + *Umschalt* + *Enter* bestätigen.
- EXCEL-Befehl ZÄHLENWENN: Die absoluten Häufigkeiten einzelner Merkmale werden abgezählen. Dieser Befehl kann auch nicht-numerische Informationen verarbeiten.
  - Flexibel aber arbeitsaufwendig
  - Alle benötigten Größen müssen selbstständig berechnet werden

### Maßzahlen für eindimensionale Verteilung

Manchmal ist man an **Informationen** über ein Merkmal in sehr **komprimierter Form** interessiert. Spezifische Maßzahlen beinhalten möglichst viel Information über die Daten in einer **einzigen Zahl**. Man unterscheidet:

- **O Lagemaße:** spiegeln das Zentrum der Verteilung wider (z.B. Mittelwert)
- Streuungsmaße: geben an, wie weit die Daten von einander oder von einer Lagemaßzahl abweichen (z.B. Varianz)

Manche Maßzahlen sind nicht für alle Skalenniveaus sinnvoll:

.

| Merkmalsausprägungen | Unterscheiden | Ordnen | Summen /<br>Differenzen | Quotienten |
|----------------------|---------------|--------|-------------------------|------------|
| Nominal              | Ja            | Nein   | Nein                    | Nein       |
| Ordinal              | Ja            | Ja     | Nein                    | Nein       |
| Metrisch             |               |        |                         |            |
| Intervallskaliert    | Ja            | Ja     | Ja                      | Nein       |
| Verhältnisskaliert   | Ja            | Ja     | Ja                      | Ja         |

#### Lagemaße: Arithmetisches Mittel

Arithmetisches Mittel (Mittelwert, Durchschnitt,  $\bar{x}$ )

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{1}$$

Liegen nur r verschiedene Ausprägungen vor, kann der Mittelwert vereinfachend auch mit

$$\bar{x} = \frac{1}{N} \sum_{m=1}^{r} x_m h_m = \sum_{m=1}^{r} x_m \rho_m$$
(2)

berechnet werden. (Formel 1 behält aber weiterhin Gültigkeit.)

#### Hinweise:

- Ausschließlich für metrische Merkmale geeignet. Ungeeignet für nominale und ordinale Merkmale.
- Bei intervallskalierten Merkmalen werden als Ausprägungen die Intervallmitten verwendet. Hier muss Formel 2 verwendet werden.
- EXCEL-Befehl: MITTELWERT

#### Lagemaße: Median

Der **Median**  $\tilde{x}_{0,5}$  ist der mittlere Wert einer geordneten Datenreihe. Mindestens 50 % der Objekte haben eine Ausprägung, die höchstens so groß ist wie der Median, und mindestens 50 % der Objekte haben eine Ausprägung, die mindestens so groß ist wie der Median.

Wenn  $x_{(i)}$  die i-te Stelle einer geordneten Datenreihe ist, dann ist der Median:

$$\tilde{x}_{0,5} = \begin{cases} x_{\frac{N+1}{2}} & \text{wenn } N \text{ ungerade} \\ \\ \frac{1}{2} \left( x_{\frac{N}{2}} + x_{\frac{N}{2}+1} \right) & \text{wenn } N \text{ gerade} \end{cases}$$

Hinweis:

- EXCEL-Befehl: MEDIAN (auch QUANTIL.INKL möglich, siehe nächste Seiten)
- Für ordinale und metrische Merkmale geeignet. Ungeeignet für nominale Merkmale.

#### Lagemaße: Mittelwert vs Median

Beispiel: 3 Personen sind 150 cm, 160 cm und 200 cm groß.

- Die Personen sind durchschnittlich 170 cm groß (arithmetisches Mittel)
- Die durchschnittliche Person der Gruppe ist 160 cm groß (Median)
- Wird die Stichprobe um eine 4. Person ergänzt, die 170 cm groß ist, bleibt der Mittelwert unverändert, während der Median auf 165 cm steigt.

### Quantil

**Quantile** (auch Perzentile,  $\tilde{x}_{\alpha}$ ) sind Ausprägungen von quantitativen Variablen, die **geordnete Datenreihen** in Gruppen unterteilen, so dass ein bestimmter Anteil (oder Prozentsatz) über und ein bestimmter Anteil unter dem Quantil liegt. Das  $\alpha$ -Quantil ist jener Wert  $\tilde{x}_{\alpha}$ , für den mindestens der Anteil  $\alpha$  der Daten kleiner oder gleich  $\tilde{x}_{\alpha}$  und mindestens der Anteil  $1 - \alpha$  der Daten größer oder gleich  $\tilde{x}_{\alpha}$  ist.

$$\tilde{x}_{\alpha} = \begin{cases} x_{(k)} & \text{wenn } N \cdot \alpha \text{ keine ganze Zahl ist} \\ k \text{ ist dann die auf } N \cdot \alpha \text{ folgende ganze Zahl} \\ \frac{1}{2} \left( x_{(k)} + x_{(k+1)} \right) & \text{wenn } N \cdot \alpha \text{ eine ganze Zahl ist} \\ \text{dann ist } k = N \cdot \alpha \end{cases}$$

Spezialfälle:

- Median: 0,5-Quantil
- Quartile:  $\tilde{x}_{0,25}$ ,  $\tilde{x}_{0,5}$  (= Median) und  $\tilde{x}_{0,75}$  teilen Daten in 4 gleich große Gruppen.
- EXCEL-Befehl: QUANTIL.INKL

#### Streuungsmaße: Motivation

Abbildungen zeigen Histogramme zu tatsächlichem (links) und modifiziertem (rechts) Haushaltseinkommen. Das durchschnittliche Haushaltseinkommen (Mittelwert) beträgt in beiden Fällen 37,150 Euro.



### Streuungsmaße (1)

Die wichtigste Streuungskennzahl ist die **Varianz**  $(s^2)$ , die das arithmetische Mittel der quadrierten Abstände der Datenpunkte zum Mittelwert ist. Ausgehend von der Varianz werden weitere Streuungsmaße wie die **Standardabweichung** (s) oder der **Variationskoeffizient** (V) berechnet.

$$s^2 = rac{1}{N}\sum_{i=1}^N (x_i - ar{x})^2$$
 $s = +\sqrt{s^2}$  $V = rac{s}{ar{x}}$ 

# Streuungsmaße (2)

#### Anmerkungen:

- Varianz (und somit Standardabweichungen und Variationskoeffizient) sind nur für metrische Merkmale geeignet, nicht für nominale oder ordinale Merkmale.
- Die Maßeinheit der Varianz ist quadratisch, die Standardabweichung und die Spannweite werden in der gleichen Maßeinheit wie die Messwerte angegeben, der Variationskoeffizient besitzt keine Maßeinheit, ist also dimensionslos.

• Beispiel:

|                       |                       | HH-Einkommen<br>in Euro | HH-Einkommen<br>in 1,000 Euro | Verhältnis |
|-----------------------|-----------------------|-------------------------|-------------------------------|------------|
| Untersuchungsumfang   | Ν                     | 5,407                   | 5,407                         | 1          |
| Mittelwert            | $\bar{x}$             | 37,149.97               | 37.15                         | 1,000      |
| Varianz               | <b>s</b> <sup>2</sup> | 714,384,481.32          | 714.38                        | 1,000,000  |
| Minimum               | X <sub>min</sub>      | 583.00                  | 0.58                          | 1,000      |
| Maximum               | X <sub>max</sub>      | 507,369.00              | 507.37                        | 1,000      |
| Standardabweichung    | 5                     | 26,727.97               | 26.73                         | 1,000      |
| Variationskoeffizient | V                     | 0.72                    | 0.72                          | 1          |

23 / 25

### Streuungsmaße (2)

#### **EXCEL**-Befehle:

- Varianz: VAR.P für Grundgesamtheit
- Standardabweichung: STABW.N für Grundgesamtheit

6

**Wichtig**: Handelt es sich bei einem Datensatz nur um eine Stichprobe (mit Umfang n < N), dann muss die **korrigierte Varianz**  $\hat{s}^2$  und die **korrigierte Standardabweichung**  $\hat{s}$  berechnet werden (weil mit n = 1  $\hat{s}^2$  nicht berechnet werden kann):

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

$$\hat{s} = +\sqrt{\hat{s}^2}$$

Die **EXCEL-Befehle** sind VAR.S (korrigierte Varianz) und STABW.S (korrigierte Standardabweichung)

### EXCEL Add-In Analysefunktionen

Eine Berechnung der Lage und Streuungsmaße ist in Excel auch über **Daten**  $\rightarrow$  **Analyse**  $\rightarrow$  **Datenanalyse**  $\rightarrow$  **Populationskenngrößen**  $\rightarrow$  **Statistische Kenngrößen** möglich. Hierbei wird auf die korrigierte Varianz bzw. die korrigierte Standardabweichung zurückgegriffen.

- Mit diesem Befehl können nur numerische Ausprägungen verarbeitet werden können.
- Wenn die Merkmale numerisch sind, werden alle Populationskenngrößen ausgewiesen, selbst dann, wenn einzelne Maßzahlen nicht sinnvoll sind!